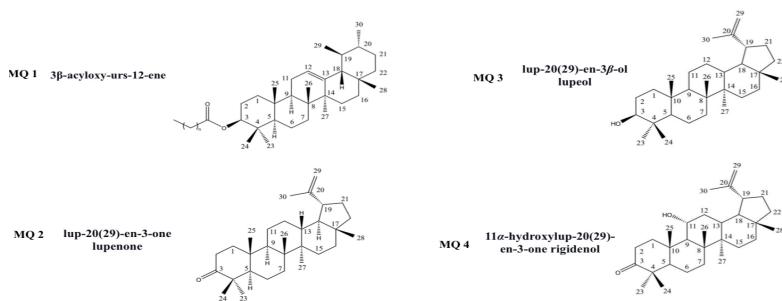


10th Brazilian Conference on Natural Products XXXVI RESEM

4-7 November 2025, Belo Horizonte, MG, Brazil

Section: 02

PHYTOCHEMICAL STUDY OF THE HEXANE/ETHYL ETHER EXTRACT OF *Maytenus quadrangulata* (CELASTRACEAE) ROOTS


Fernanda C. Álvares^{1*}, Hiago O. Esteves¹, Mariana G. Aguilar¹, Grasiely F. Sousa¹, Lucienir P. Duarte¹

fernandacamposalvares@gmail.com

I- Departamento de Química, Instituto de Ciência Exatas, UFMG.

The genus *Maytenus*, one of the largest within the Celastraceae family, is widely recognized for its chemical diversity and pharmacological potential, particularly due to the occurrence of pentacyclic triterpenes with remarkable biological activities.¹ *Maytenus quadrangulata*, a Brazilian species native to the Atlantic Forest and Caatinga biomes, popularly known as “espinho-de-deus”, has been the subject of phytochemical studies that revealed triterpenes with cytotoxic and antiviral activities²; however, it remains underexplored regarding the chemical composition of its roots. In this context, the present study reports the phytochemical investigation of the hexane/ethyl ether (1:1) root extract of *M. quadrangulata*. Successive column chromatography (CC) and some preparative layer chromatography (PLC) led to the isolation of four pentacyclic triterpenes: 3 β -acyloxy-urs-12-ene (**MQ 1**), an ursane skeleton compound with reported antioxidant and antimicrobial properties; lup-20(29)-en-3-one (lupenone, **MQ 2**), a lupane skeleton triterpene with anti-inflammatory, antiviral and anticancer activities, described for the first time as a constituent of this species; lup-20(29)-en-3 β -ol (lupeol, **MQ 3**), a triterpene known for its anti-inflammatory and antioxidant properties; and 11 α -hydroxylup-20(29)-en-3-one (rigidenol, **MQ 4**), with previously reported antimicrobial activity. The structural characterization of these compounds was achieved by ¹H and ¹³C NMR analyses. This study highlights the chemical richness of *M. quadrangulata* roots and reinforces the relevance of Celastraceae species as a promising source of bioactive molecules with potential applications in drug discovery.

Figure 1: Chemical structure of compounds **MQ 1–MQ 4**

Keywords: Triterpenes, Celastraceae, *Maytenus quadrangulata*, Pentacyclic terpenes.

References: 1. Camargo, K. C. et al. *Molecules* 2022, 27, 874. 2. Aguilar, M. G. et al. *J. Braz. Chem. Soc.* 2022, 34, 10.

Acknowledgments: CAPES, CNPq (nº408726/2023-7) and FAPEMIG.

Sociedade Brasileira de Química
Divisão de Produtos Naturais

U F M G
UNIVERSIDADE FEDERAL
DE MINAS GERAIS

10th
BCNP
XXXVI RESEM